Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(1): 010802, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478433

RESUMO

We report on experiments that quantify the role of a central electronic spin as a relaxation source for nuclear spins in its nanoscale environment. Our strategy exploits hyperpolarization injection from the electron as a means to controllably probe an increasing number of nuclear spins in the bath and subsequently interrogate them with high fidelity. Our experiments are focused on a model system of a nitrogen vacancy center electronic spin surrounded by several hundred ^{13}C nuclear spins. We observe that the ^{13}C transverse spin relaxation times vary significantly with the extent of hyperpolarization injection, allowing the ability to measure the influence of electron-mediated relaxation extending over several nanometers. These results suggest interesting new means to spatially discriminate nuclear spins in a nanoscale environment and have direct relevance to dynamic nuclear polarization and quantum sensors and memories constructed from hyperpolarized nuclei.

2.
ACS Appl Mater Interfaces ; 13(50): 59892-59903, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34890203

RESUMO

The electrochemical oxidation of small organic molecules (SOMs) such as methanol and glucose is a critical process and has relevant applications in fuel cells and sensors. A key challenge in SOM oxidation is the poisoning of the surface by carbon monoxide (CO) and other partially oxidized intermediates, which is attributed to the presence of Pt-Pt pair sites. A promising pathway for overcoming this challenge is to develop catalysts that selectively oxidize SOMs via "direct" pathways that do not form CO as a primary intermediate. In this report, we utilize an ambient, template-based approach to prepare PtAu alloy nanowires with tunable compositions. X-ray photoelectron spectroscopy measurements reveal that the surface composition matches that of the bulk composition after synthesis. Monte Carlo method simulations of the surface structure of PtAu alloys with varying coverage of oxygen adsorbates and varying degrees of oxygen adsorption strength reveal that oxygen adsorption under electrochemical conditions enriches the surface with Pt and a large fraction of Pt-Pt sites remain on the surface even with the Au content of up to 50%. Electrochemical properties and the catalytic performance measurements of the PtAu nanowires for the oxidation of methanol and glucose reveal that the mechanistic pathways that produce CO are suppressed by the addition of relatively small quantities of Au (∼10%), and CO formation can be completely suppressed by 50% Au. The suppression of CO formation with small quantities of Au suggests that the presence of Pt-Au pair sites may be more important in determining the mechanism of SOM oxidation rather than Pt-Pt pair site density.

3.
Phys Rev Lett ; 127(17): 170603, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34739295

RESUMO

We report the observation of long-lived Floquet prethermal states in a bulk solid composed of dipolar-coupled ^{13}C nuclei in diamond at room temperature. For precessing nuclear spins prepared in an initial transverse state, we demonstrate pulsed spin-lock Floquet control that prevents their decay over multiple-minute-long periods. We observe Floquet prethermal lifetimes T_{2}^{'}≈90.9 s, extended >60 000-fold over the nuclear free induction decay times. The spins themselves are continuously interrogated for ∼10 min, corresponding to the application of ≈5.8×10^{6} control pulses. The ^{13}C nuclei are optically hyperpolarized by lattice nitrogen vacancy centers; the combination of hyperpolarization and continuous spin readout yields significant signal-to-noise ratio in the measurements. This allows probing the Floquet thermalization dynamics with unprecedented clarity. We identify four characteristic regimes of the thermalization process, discerning short-time transient processes leading to the prethermal plateau and long-time system heating toward infinite temperature. This Letter points to new opportunities possible via Floquet control in networks of dilute, randomly distributed, low-sensitivity nuclei. In particular, the combination of minutes-long prethermal lifetimes and continuous spin interrogation opens avenues for quantum sensors constructed from hyperpolarized Floquet prethermal nuclei.

4.
ACS Omega ; 4(10): 14226-14233, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31508545

RESUMO

A template-directed, sol-gel synthesis is utilized to produce crystalline RuO2 nanowires. Crystalline nanowires with a diameter of 128 ± 15 nm were synthesized after treating the nanowires at 600 °C in air. Analysis of these nanowires by X-ray powder diffraction revealed the major crystalline phase to be tetragonal RuO2 with a small quantity of metallic ruthenium present. Further analysis of the nanowire structures by high-resolution transmission electron microscopy reveals that they are polycrystalline and are composed of interconnected, highly crystalline, nanoparticles having an average size of ∼25 nm. Uniform 3 nm Pt nanoparticles were dispersed on the surface of RuO2 nanowires using an ambient, solution-based technique yielding a hybrid catalyst for methanol oxidation. Linear sweep voltammograms (LSVs) and chronoamperometry performed in the presence of methanol in an acidic electrolyte revealed a significant enhancement in the onset potential, mass activity, and long-term stability compared with analogous Pt nanoparticles supported on commercially available Vulcan XC-72R carbon nanoparticles. Formic acid oxidation LSVs and CO stripping voltammetry revealed that the RuO2-supported Pt nanoparticles exhibit significantly higher CO tolerance, which leads to higher catalytic stability over a period of several hours. X-ray photoelectron spectroscopy results suggest that crystalline RuO2 leads to less-significant oxidation of the Pt surface relative to more widely studied hydrous RuO2 supports, thereby increasing catalytic performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...